0% Complete
صفحه اصلی
/
نهمین کنفرانس بین المللی فناوری و مدیریت انرژی
FPGA based designing Central processing unit of Implantable Cardiac Defibrillators with low energy consumption by using CNN deep neural network
نویسندگان :
Alirea Keyanfar
1
Reza Ghaderi
2
Soheila Nazari
3
1- دانشگاه شهید بهشتی
2- دانشگاه شهید بهشتی
3- دانشگاه شهید بهشتی
کلمات کلیدی :
Energy consumption optimization in medical devices
چکیده :
The heart is one of the most important organs of the human body. Diagnosis and timely treatment of cardiac arrhythmias are important issues in the construction of medical equipment that protects the heart. It is critical to diagnose and treat cardiac arrhythmias such ventricular fibrillation (VF) and ventricular tachycardia (VT) as soon as they are noticed. An implantable cardioverter-defibrillator (ICD) is a device designed to detect and treat ventricular tachycardia (VT) and ventricular fibrillation (VF). Signal processing and arrhythmia detection of implant defibrillator devices is one of the most important parts of these devices and should be optimal in terms of detection time and detection accuracy. In this paper, an artificial neural network based on deep learning has been designed for use in signal processing and arrhythmia detection sections of ICD defibrillator devices. The designed convolution neural network is in good condition in terms of accuracy and is also in optimal condition in terms of the number of parameters. The optimal number of parameters can increase network speed in signal processing and arrhythmia detection and can also be useful in reducing battery consumption. Finally, the designed CNN network hardware was implemented. zynq chips have the ability to process in parallel and can be useful in increasing the processing speed, so zynq chips were selected for the hardware target. After the hardware implementation stage, it is possible to proceed from the IP Core produced to design other parts of the defibrillator in the Vivado software.
لیست مقالات
لیست مقالات بایگانی شده
Performance of A Single Switch Non-Isolated DC/DC Converter with Coupled-Inductor for Renewable Energy Applications
Amirreza Bahadori - Seyed Hossein Hosseini - Mehran Sabahi - Ebrahim Babaei
Optimizing the management of acid gas flaring in Iran
Seyyed mohammad yahya Maibodi - Hossein Khajepour - Hamidreza Habibiyan
بررسی شیوه های متداول و مترقی به همراه ارائه راهکارهای جدید و عملی مدیریت بار در صنعت فولاد جهت مدیریت و مصرف بهینه انرژی- مطالعه ی مجتمع صنعتی ذوب آهن پاسارگاد شیراز
محمد حسین شمشیرزن - محسن گیتی زاده حقیقی - محمد حسین نعمت الهی
A High-Gain Common-Ground Single-Switch DC-DC Converter with Low Voltage Stress on the Power Switch and Diodes
Ali Nadermohammadi - َAli Seifi - Hadi Aghaei - Seyed Majid Hashemzadeh - Pouya Abolhassani - Ebrahim Babaei
مخاطرات زیست محیطی و اثرات آن در ریزشبکههای جزیره ا ی با مکانیزم سیستم های ذخیره سازی انرژی الکتریکی
احمد زندی - معصومه محمدیان - حدیث قائیدرحمتی
بررسی اهمیت راهبردی مواد معدنی در فرآیند گذار انرژی
سیدمحمد ساداتیان جویباری - ورهرام احمدزاده - راشد پورمیرزایی
Using Long Short-Term Memory Networks as Virtual Wind Direction Sensors for Improved Wind Farm Turbines Orientation
Amirhossein Karamali - Abolghasem Daeichian - Saber Rezaei
امکان سنجی کاهش مصرف انرژی و افزایش تبادل حرارت در مبدل پوسته و لوله با استفاده از لوله ها با سطح فرورفتگی
مسعود دربندی - محمد صالح عبدالله پور - کاظم مشایخ
Useful Application of Machine learning Methods in Smart Grids: A Mini Review
Pooya Parvizi - Alireza Mohamadi amidi - Milad Jalilian - Hana Parvizi
A Two-Stage Stochastic Optimization Scheduling Approach for Integrating Renewable Energy Sources and Deferrable Demand in the Spinning Reserve Market
Mohammadmohsen Hayati - Ali Aminlou - Kazam Zare - Mehdi Abapour
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 41.2.0