0% Complete
صفحه اصلی
/
نهمین کنفرانس بین المللی فناوری و مدیریت انرژی
Advanced Predictive Modeling of Pollutant Gas Emissions in the Automotive Industry based on Machine Learning
نویسندگان :
Ashkan Safari
1
Hamed Kheirandish Gharehbagh
2
Morteza Nazari-Heris
3
Omid Halimi Milani
4
Hamed Kharrati
5
Afshin Rahimi
6
1- University of Tabriz
2- University of Tabriz
3- Lawrence Technological University
4- University of Illinois at Chicago
5- University of Windsor
6- University of Windsor
کلمات کلیدی :
Forecasting،Automative Industry،Optimization،CO2 Emissions،Linear Regression،Green Environment،Precision Forecasting،Sustainability،Machine Learning
چکیده :
Predicting CO2 emissions in the automotive industry is vital for driving innovation in fuel efficiency, shaping policies, and fostering a greener, sustainable future. An advanced predictive modeling approach for estimating CO2 emissions in the automotive industry using machine learning techniques is presented in this paper. Data from 46 distinct automotive brands was incorporated, comprehensively analyzing various vehicles. The predictive model employed six numeric features, encompassing engine size, cylinder count, and diverse fuel consumption metrics, along with five categorical features concerning brand, model, vehicle class, transmission, and fuel type. Considerable results were achieved, with a mean squared error (MSE) of 29.99, a root mean squared error (RMSE) of 5.48, and an R2 of 0.991, showcasing the model's forecasting accuracy for CO2 emissions. Therefore, this work underscores the effectiveness of machine learning in CO2 emissions prediction and emphasizes the importance of considering diverse features and multiple automotive brands for constructing comprehensive and robust models in the context of environmental impact assessment, thereby contributing to a more sustainable automotive industry.
لیست مقالات
لیست مقالات بایگانی شده
پخش بار احتمالاتی شبکه توزیع برق از طریق خوشه بندی با الگوریتم فرا ابتکاری جستجوی کلاغ و مقایسه آن با روش مونت کارلو
مرسل صالحی - محمد مهدی رضایی - شاهرخ شجاعیان - مریم شریف دوست
Pave the Way for Hydrogen-Ready Smart Energy Hubs in Deep Renewable Energy System
Mahyar Lasemi Imeni - Mohammad sadegh Ghazizadeh
ENERGY CONSUMPTION MINIMIZATION IN HOT AND DRY CLIMATES: ANALYZING THE INFLUENCE OF PASSIVE DESIGN TECHNIQUES IN BUILDINGS IN KASHAN
Shahrzad Zeynali - Mohammad Nazififard - Mohammad Reza Hatamian
بررسی بازار هیدروژن: آینده نگری منطقه ای
امیرحسین جوان فکر - شایسته ابراهیمی ذاکر - زهرا سادات عادل برخوردار
Simulation of a nitric acid production unit in Aspen Hysys
Erfan Abbasian Hamedani - Zeinab Hamidzadeh - Seyed ali Mousavi - Alireza Kariman - Atila Mahnesaei
Sliding Mode-based Extremum Seeking Control for Maximum Power Point Tracking for Photovoltaic Systems Considering Insolation and Ambient Temperature Variations
Nima Ayobi - Amin Ziaei - Asaad Seyedrahmani - Mahdi Zeinali
Resiliency-Oriented Planning of Smart City Energy Infrastructure, Considering Energy Hubs, Based on Prioritized Critical Loads
Ahad Fallahsabet - Mahdi Nozarian - Alireza Fereidunian
Comparison of effective greenhouse gases and global warming
Milad Tavassoli - Arash Kamran-Pirzaman
Comparing Three Separate Discrete Algorithms for Generation Maintenance Optimization
Sina Soltani - Masoud Jokar Kouhanjani
Enhancing Efficiency in Bidirectional DC-DC Converters through PSO-Based Optimization
Saeed Izadi - Mahnaz Izadi - Khatereh Jabari - Behnam Zaker
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 41.2.0